Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 30, 2000 - Issue 10
348
Views
55
CrossRef citations to date
0
Altmetric
Research Article

Characterization of cytochrome P450 enzymes involved in drug oxidations in mouse intestinal microsomes

, , , , &
Pages 943-953 | Published online: 22 Sep 2008
 

Abstract

1. Cytochrome P450 (P450, CYP) enzymes involved in drug oxidations in mouse intestines were characterized for their role in the first-pass metabolism of xenobiotics. 2. Preparation of mouse intestinal microsomes using a buffer containing glycerol and protease inhibitors including (p-amidinophenyl) methanesulphonyl fluoride, EDTA, soybean trypsin inhibitor, aprotinin, bestatin and leupeptine gave the highest testosterone 6β-hydroxylase activity among several preparation buffers tested in this study. Testosterone 6β-hydroxylase activity catalysed by mouse intestinal microsomes subjected to freezing and thawing was lower than that catalysed by unfrozen intestinal microsomes. 3. Low but significant catalytic activities of nifedipine oxidation, midazolam 1′ - and 4-hydroxylation, chlorzoxazone 6-hydroxylation, bufuralol 1′ - and 6-hydroxylations and tolbutamide methylhydroxylation were observed in mouse intestinal microsomes. Testosterone 6β-hydroxylation, chlorzoxazone 6-hydroxylation, and bufuralol 1′ - and 6-hydroxylations were inhibited by ketoconazole, diethyldithiocarbamate and quinine respectively. 4. Immunoblot analysis using anti-rat CYP3A antibodies demonstrated two immunoreactive bands showing similar migration in mouse intestinal and hepatic microsomes, although studies using anti-CYP1A, anti-CYP2C, anti-CYP2D and anti-CYP2E1 antibodies did not detect any band in mouse intestinal microsomes. 5. The results suggest that mouse intestinal microsomes should be prepared with glycerol and several protease inhibitors and that Cyp3a enzymes probably play an important role in drug oxidations catalysed by mouse intestine.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.