Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 33, 2003 - Issue 1
81
Views
16
CrossRef citations to date
0
Altmetric
Research Article

4-Biphenylaldehyde and 9-anthraldehyde: two fluorescent substrates for determining P450 enzyme activities in rat and human

, , , , &
Pages 1-11 | Published online: 22 Sep 2008
 

Abstract

1. 4-Biphenylaldehyde (4-BA) and 9-anthraldehyde (9-AA) were examined as substrates for cytochrome P450 (CYPs) enzymes in rat and human. Both aldehydes were oxidized by CYPs to fluorescent carboxylic acids, which can be assayed with a high sensitivity by an easy fluorimetric method. 2. With liver microsomes from control and induced rats, the oxidation of both 9-AA and 4-BA followed simple Michaelis-Menten kinetics. Only microsomes from rats pretreated with phenobarbital (a strong inducer of P4502B1/2) could increase (about threefold) the oxidation rates (V max) of both aldehydes above the control values, which were 6.7 ± 1.1 and 3.3 ± 0.6 nmol min − 1 mg − 1 protein for 4-BA and 9-AA, respectively. On the other hand, the K m 's, which were similar for both aldehydes (about 25 µM), did not change significantly with any inducer. The use of purified rat CYP1A1, 2E1, 2B1 and 2C11 in a reconstituted system showed that only 2B1 and 2C11 could oxidize both substrates with a high turnover. 3. In human liver microsomes, the oxidation rates of these aldehydes (1.6 ± 0.2 and 0.42 ± 0.1 nmol min − 1 mg − 1 protein for 4-BA and 9-AA, respectively) were lower than those of rat but with similar K m 's(20-26 µm). 4. The oxidation of these aldehydes was also determined with cDNA-expressed CYP1A1, 1A2, 2A6, 2B6, 2C9, 2D6, 2E1 and 3A4 and with a characterized bank of 14 human liver microsomes. In a reconstituted system, only CYP2B6, 2A6, 3A4 and with a lower turnover 2C9 oxidized both substrates. 5. Among the CYP marker activities of the 14 human samples, good correlations were only observed between CYP3A-dependent 6 β -testosterone hydroxylase and the oxidation of 4-BA (r = 0.74) or 9-AA (r = 0.80) and between the oxidation of 4-BA versus 9-AA (r = 0.74). Weak correlations were also found between the 2B6-linked S-mephenytoin N- demethylase and the oxidation of 4-BA (r = 0.58) or 9-AA (r = 0.65). 6. Inhibition experiments revealed that the oxidation of these aldehydes was inhibited by ketoconazole, 8-methoxypsoralene and sulphophenazole, selective inhibitors for P4503A6, 2A6 and 2C9, respectively. 7. In summary, based on the use of cDNA-expressed CYPs, correlation analysis and chemical inhibition, the metabolism in human liver microsomes of these aldehydes appears primarily catalysed by CYP3A, although CYP2A6, 2B6 and 2C9 may play a role. 9-AA and particularly 4-BA, owing to the high rate of its metabolism, may be two novel useful fluorescent probe substrates for assaying CYP activities in various species.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.