Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 34, 2004 - Issue 5
277
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Identification and relative contributions of human cytochrome P450 isoforms involved in the metabolism of glibenclamide and lansoprazole: evaluation of an approach based on the in vitro substrate disappearance rate

, &
Pages 415-427 | Received 21 Oct 2003, Published online: 22 Sep 2008
 

Abstract

1. The identification and relative contributions of human cytochrome P450 (CYP) enzymes involved in the metabolism of glibenclamide and lansoprazole in human liver microsomes were investigated using an approach based on the in vitro disappearance rate of unchanged drug.

2. Recombinant CYP2C19 and CYP3A4 catalysed a significant disappearance of both drugs. When the contribution of CYPs to the intrinsic clearance (CLint) of drugs in pooled human microsomes was estimated by relative activity factors, contributions of CYP2C19 and CYP3A4 were determined to be 4.6 and 96.4% for glibenclamide, and 75.1 and 35.6% for lansoprazole, respectively.

3. CLint of glibenclamide correlated very well with CYP3A4 marker activity, whereas the CLint of lansoprazole significantly correlated with CYP2C19 and CYP3A4 marker activities in human liver microsomes from 12 separate individuals. Effects of CYP-specific inhibitors and anti-CYP3A serum on the CLint of drugs in pooled human liver microsomes reflected the relative contributions of CYP2C19 and CYP3A4.

4. The results suggest that glibenclamide is mainly metabolized by CYP3A4, whereas lansoprazole is metabolized by both CYP2C19 and CYP3A4 in human liver microsomes. This approach, based on the in vitro drug disappearance rate, is useful for estimating CYP identification and their contribution to drug discovery.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.