Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 34, 2004 - Issue 4
499
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Apparent absolute oral bioavailability in excess of 100% for a vitronectin receptor antagonist (SB-265123) in rat. II. Studies implicating transporter-mediated intestinal secretion

, , , &
Pages 367-377 | Received 17 Nov 2003, Published online: 10 Aug 2010
 

Abstract

  1. Transporters have been increasingly identified as a factor in limiting the oral bioavailability of certain drugs. Previously, the present authors investigated a compound (SB-265123) with an apparent absolute oral bioavailability (Fapp) consistently >100%, and excluded likely artefactual causes for this observation, as well as standard considerations of non-stationary or non-linear pharmacokinetics. The data led the authors to believe that SB-265123 might be a transporter substrate in the rat, and it was hypothesized that transporter interactions might be responsible for the observed Fapp>100%.

  2. In the present study, a model was proposed incorporating rapid and complete absorption and elimination by a saturable intestinal secretory pathway. Intestinal secretion was demonstrated for SB-265123 using a rat single-pass intestinal perfusion technique. In addition, in a study employing both independent and simultaneous intravenous and oral administration of SB-265123, exposure to SB-265123 was greater than additive on joint intravenous and oral administration, lending further support to the hypothesis of a saturable transporter. Furthermore, in a study with co-administration of GF120918A, a transporter inhibitor, the observed Fapp for SB-265123 was only 84±17%, providing additional evidence for transporter involvement in the >100% Fapp phenomenon.

  3. Experience with SB-265123 illustrates a counterintuitive impact of transporters on oral bioavailability and highlights the importance of considering transporter interactions in the systemic disposition of xenobiotics, even those not demonstrating low oral bioavailability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.