Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 35, 2005 - Issue 4
17
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Uptake–toxicity relationships of a series of N-substituted N′-(4-imidazole-ethyl)thiourea in precision-cut rat liver slices

, , &
Pages 391-404 | Received 19 Aug 2004, Published online: 16 Oct 2008
 

Abstract

A previous study showed that the cytotoxicity of a series of N-p-phenyl-substituted N′-(4-imidazole-ethyl)thiourea in precision-cut rat liver slices increased with increasing electron-withdrawing capacity of the p-substituent and may be related to the Vmax/Km values of bioactivation of the thiourea-moiety by hepatic flavin-containing monooxygenases (FMOs). However, differences in the uptake of xenobiotics into precision-cut liver slices can also have consequences for the rates of metabolism of xenobiotics. In the present study, therefore, we investigated the rate and nature of uptake of 9 N-substituted N′-(4-imidazole-ethyl)thiourea into precision-cut rat liver slices. It was found that a five-fold difference exists among a series of N-substituted N′-(4-imidazole-ethyl)thiourea both in the initial rate of uptake and in the steady-state levels ultimately achieved in the precision-cut rat liver slices. It appeared that the most cytotoxic compounds were also the most readily absorbed compounds. The concentration-dependent initial rate of uptake could be described by a carrier-mediated saturable component and a non-saturable component. At cytotoxic concentrations, the non-saturable component accounted for more than 95% of the total uptake. From this study, it is concluded that differences in rate of uptake of thiourea-containing compounds may be a contributing factor to the differences in bioactivation by FMOs as the basis of the structure–toxicity relationships observed in precision-cut rat liver slices.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.