Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 36, 2006 - Issue 7
313
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Pharmacokinetics, metabolism, excretion and plasma protein binding of 14C-levofloxacin after a single oral administration in the Rhesus monkey

, , , , &
Pages 597-613 | Received 26 Jan 2006, Accepted 04 Mar 2006, Published online: 22 Sep 2008
 

Abstract

Levofloxacin's metabolism, excretion, and in vitro plasma protein binding, together with its pharmacokinetics, were studied in the Rhesus monkey in support of an anthrax efficacy study in this species. Three males and three female Rhesus monkeys were dosed with a single oral dose of 14C-levofloxacin at 15 mg kg−1 (2 MBq kg−1). Following dose administration, blood samples were collected up to 48 h post-dose, and urine and faeces were quantitatively collected up to 168 h post-dose. Blood, plasma, urine, and faeces were analysed for total radioactivity. Metabolite profiling and identification was performed using radio-high-performance liquid chromatography (HPLC) and liquid chromatography coupled with tandem mass spectrometry detection (LC-MS/MS). Additionally, the plasma protein binding of levofloxacin was determined in vitro by means of equilibrium dialysis. Peak plasma levels of total radioactivity and levofloxacin were rapidly reached after oral administration with a total radioactivity blood: plasma ratio close to unity. The elimination half-life of levofloxacin was estimated at about 2 h. Total radioactivity was mainly excreted in urine (about 57–86% of the dose) with faecal excretion accounting for only a minor fraction of the total amount of excreted radioactivity (about 7.4–14.7%). In the plasma, the majority of total radioactivity was accounted for by levofloxacin. In addition, two minor metabolites, i.e. levofloxacin n-oxide and presumably a glucuronide conjugate of levofloxacin, were detected. In the urine, five components were found, with levofloxacin being the major component. Minor metabolites included desmethyl levofloxacin, levofloxacin n-oxide, and a glucuronide conjugate of levofloxacin. In the faeces, the major analyte was a polar metabolite, tentatively identified as a levofloxacin glucuronide. The in vitro plasma protein binding was low (on average 11.2%) and independent of concentration (1.0–10.0 µg ml−1). No sex differences were noted in any of the investigations. The present data indicated that the metabolism and excretion pattern, and also the in vitro plasma protein binding of levofloxacin in the Rhesus monkey, were comparable with those previously reported in man, hereby supporting the use of this animal species in the efficacy evaluation of levofloxacin against inhalation anthrax. The shorter half-life of levofloxacin in the Rhesus monkey relative to man (2 versus 7 h) prompted the development of an alternative dosing strategy for use in the efficacy study.

Acknowledgements

Willem Meuldermans, Ludy van Beijsterveldt, and Geert Mannens are thanked for reviewing the manuscript. The authors would also like to express their gratitude to Colin G. Young and Stuart Cameron for their scientific input during the course of the study. Mia Vanthienen and Carla van Grootel are acknowledged for secretarial assistance during the preparation of the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.