Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 37, 2007 - Issue 1
153
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Genetic polymorphisms involved in toxicant-metabolizing enzymes and the risk of chronic benzene poisoning in Chinese occupationally exposed populations

, , , , , , & show all
Pages 103-112 | Received 04 Jul 2006, Accepted 09 Sep 2006, Published online: 22 Sep 2008
 

Abstract

Benzene is a recognized haematotoxin and leukaemogen, but its mechanism of action and the role of genetic susceptibility are still unclear. Cytochrome P450 2E1 (CYP2E1) and myeloperoxidase (MPO) are involved in benzene activation; and NAD (P)H:quinine oxidoreductase 1 (NQO1), glutathione S-transferase theta 1 (GSTT1) and glutathione S-transferase mu 1 (GSTM1) participate in benzene detoxification. The common, well-studied single-nucleotide polymorphisms (SNPs) were analysed in these genes drawn from the toxicant-metabolizing pathways. A total of 100 workers with chronic benzene poisoning (CBP) and 90 controls were enrolled in China. There was a 2.82-fold (95% CI = 1.42–5.58) increased risk of CBP in the subjects with the NQO1 609C > T mutation genotype (T/T) compared with those carrying heterozygous (C/T) and wild-type (C/C). The subjects with the GSTT1 null genotype had a 1.91-fold (95% CI = 1.05–3.45) increased risk of CBP compared with those with GSTT1 non-null genotype. There was no association of CYP2E1 and MPO genotype with CBP. A three genes’ interaction showed that there was a 20.41-fold (95% CI = 3.79–111.11) increased risk of CBP in subjects with the NQO1 609C > T T/T genotype and with the GSTT1 null genotype and the GSTM1 null genotype compared with those carrying the NQO1 609C > T C/T and C/C genotype, GSTT1 non-null genotype, and GSTM1 non-null genotype. The study provides evidence of an association of a gene–gene interaction with the risk of CBP.

Acknowledgements

The authors thank Xing, C. H., Gao, Y., Qiao, P. H., and Leng, S. G. for statistical analysis. They are also thankful for grant support from the National Natural Science Foundation of China (Grant No. 39870685).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.