Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 48, 2018 - Issue 2
429
Views
11
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Predictions of bisphenol A hepatic clearance in the isolated perfused rat liver (IPRL): impact of albumin binding and of co-administration with naproxen

, , , &
Pages 135-147 | Received 15 Nov 2016, Accepted 08 Feb 2017, Published online: 03 Mar 2017
 

Abstract

1. This study aimed (i) to characterise hepatic clearance (CL) of bisphenol A (BPA) and naproxen (NAP) administered alone or in binary mixtures to highlight the influence of a binding to albumin (ALB) using an isolated perfused rat liver (IPRL) system; and (ii) to compare results of prediction algorithms with measured clearance rates.

2. The IPRL system and liver microsomes were used to determine the metabolic constants of BPA and NAP either in the presence or absence of ALB. In this study, the IPRL was used as proxy for the in vivo situation. Accordingly, diverse in vitro-to-in vivo and in vivo-to-in vivo extrapolations (IVIVEs) were made to predict CL of BPA determined in situ/in vivo with ALB from metabolic data determined without ALB by using different binding correction methods (i.e., direct and conventional scaling as well as a novel scaling considering an ALB-facilitated uptake mechanism).

3. The addition of ALB significantly influenced the liver kinetics of BPA and NAP either administered alone or in binary mixtures, which was reflected in the Michaelis-Menten constants. Analysis of concomitant exposures of BPA and NAP gave a fully competitive inhibition. Furthermore, the IVIVE method based on the ALB-facilitated uptake mechanism provided the most accurate predictions of CLin vivo as compared with the other IVIVE methods when the impact of ALB is considered.

4. Our findings support the notion that high binding to ALB reduces the biotransformation of BPA and NAP when administered alone or in mixtures in the IPRL system. However, the free drug concentration in liver in vivo is probably higher than expected since the IVIVE method based on a potential ALB-facilitated uptake mechanism is the most robust prediction method. Overall, this study should improve the physiologically-based pharmacokinetic (PBPK) modelling of chemical–drug interactions.

Declaration of interest

The authors declare that there are no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.