Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 12
237
Views
8
CrossRef citations to date
0
Altmetric
Molecular Toxicology

Cytotoxicity of safrole in HepaRG cells: studies on the role of CYP1A2-mediated ortho-quinone metabolic activation

, , , , &
Pages 1504-1515 | Received 14 Jan 2019, Accepted 03 Mar 2019, Published online: 19 Jun 2019
 

Abstract

1. Safrole is a natural compound categorized as a group 2B carcinogen extracted from sassafras oil or certain other essential oils. The hepatotoxicity of safrole has always been highly concerned. So, the purpose of this study was to evaluate the role of cytochrome P450 (CYP450)-mediated reactive metabolites (RMs) formation and its induced cytotoxicity in HepaRG cells.

2. Safrole belongs to the methylenedioxyphenyl structure which could be activated to RMs. Two metabolites (M1, M2) and three new glutathione conjugates (M3–M5) of safrole ortho-oquinone RMs were found in HepaRG cells. Using human recombinant CYP450 enzymes and chemical inhibitor method, the metabolism of safrole RMs was predominantly carried out through the CYP1A2 with minor contributions by CYP2E1.

3. Induction of CYP1A2 by omeprazole (OME) enhanced safrole-induced cytotoxicity, compared with treatment with safrole alone, whereas inhibition of CYP1A2 by alpha-naphthoflavone (α-NAP) decreased the cytotoxicity. The cytotoxicity of cell induced by safrole was related to the amount of RMs formation. Besides, pretreatment with L-buthionine sulfoximine (BSO) to deplete intracellular GSH markedly enhanced safrole-induced cytotoxicity. OME induced the safrole-induced GSH exhaustion, and GSH depletion by safrole was not via oxidation of GSH and occurred prior to the increase in ROS. Furthermore, mitochondrial membrane potential (ΔΨm) could be aggravated by the inducer of CYP1A2 together with safrole. Collectively, these data suggest that the ortho-quinone RM may mediate safrole hepatotoxicity, and CYP1A2 was the core enzyme in ortho-quinone RMs-mediated safrole hepatotoxicity.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by National Natural Science Foundation of P.R. China (No. 81503340) and Natural Science Foundation of Jiangsu Province of P.R. China (No. BK20150645).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.