Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 12
308
Views
0
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Modelled plasma concentrations of pemafibrate with co-administered typical cytochrome P450 inhibitors clopidogrel, fluconazole or clarithromycin predicted by physiologically based pharmacokinetic modelling in virtual populations

, ORCID Icon & ORCID Icon
Pages 1413-1422 | Received 04 May 2020, Accepted 03 Jul 2020, Published online: 14 Jul 2020
 

Abstract

  1. Oral antidyslipidaemic drug pemafibrate is cleared from human plasma via hepatic uptake by organic anion transporting polypeptide (OATP) 1B1 and oxidation by cytochromes P450 (P450) 2C8, 2C9 and 3A4. The pharmacokinetic profiles of pemafibrate with virtual administrations of P450 inhibitors and/or disease interactions were generated using a physiologically based pharmacokinetic (PBPK) model previously established for co-administration of pemafibrate with OATP1B1 inhibitors.

  2. This PBPK model was validated in the current study using reported maximum pemafibrate plasma concentrations and areas under the curve from interaction studies in healthy subjects co-administered with clopidogrel (P450 2C8 inhibitor), fluconazole (P450 2C9/3A4 inhibitor) or clarithromycin (P450 3A4 inhibitor).

  3. Virtual co-administrations of pemafibrate with clopidogrel, fluconazole or clarithromycin increased the predicted plasma exposures of pemafibrate 1.4–1.7-fold, 1.2–1.4-fold and 2.9–11-fold, respectively, in subjects with or without moderate or severe renal impairment or Child-Pugh A or B liver cirrhosis. Some of the exposure-enhancing effects of clarithromycin may originate from its inhibitory potential toward OATP1B1, because the estimated effects of itraconazole (a P450 3A4 inhibitor) were only minor.

  4. Simulations using the current PBPK model in groups of virtual subjects with or without renal or hepatic impairment revealed modified pharmacokinetic profiles for pemafibrate following co-administration of typical P450 inhibitors.

Acknowledgements

The authors are grateful to Yoshihiko Tsunenari and Hiroyuki Kawai for their support. The authors also thank David Smallbones for copyediting a draft of this article.

Disclosure statement

The authors declare that there are no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.