Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 29, 1999 - Issue 12
99
Views
32
CrossRef citations to date
0
Altmetric
Research Article

In vitro metabolism of simazine, atrazine and propazine by hepatic cytochrome P450 enzymes of rat, mouse and guinea pig, and oestrogenic activity of chlorotriazines and their main metabolites

, , , &
Pages 1213-1226 | Published online: 22 Sep 2008
 

Abstract

1. The in vitro metabolism of chlorotriazines, simazine (SIZ), atrazine (ATZ) and propazine (PRZ) in liver microsomes from rat, mouse and guinea pig and the oestrogenic activity of chlorotriazines and their main metabolites have been studied. 2. The formation rates of products in chlorotriazine metabolism were determined by HPLC. The principal reactions catalysed by the cytochrome P450 (P450) system were N- monodealkylation and isopropylhydroxylation in all liver microsomes. As a result, 2- chloro-4-ethylamino-6-amino-1,3,5-triazine (M1) (SIZ-M1 for SIZ and ATZ-M1 for ATZ) and 2-chloro-4-amino-6-isopropylamino-1,3,5-triazine (M2) (ATZ-M2 for ATZ and PRZ-M2 for PRZ), and 2-chloro-4-ethylamino-6-(1-hydroxyisopropylamino)-1,3,5- triazine (M3)(ATZ-M3for ATZ) and 2-chloro-4-isopropylamino-6-(1-hydroxyisopropylamino)-1,3,5-triazine (M4) (PRZ-M4 for PRZ) were detected as the metabolites. N- bidealkylation was not found in this system. 3. The formation rates of N-deethylated metabolites (SIZ-M1 and ATZ-M2) were generally higher in mouse than in rat and guinea pig. The formation rates of N- deisopropylated metabolites (ATZ-M1 and PRZ-M2) in guinea pig were the lowest among the three animal species. The formation rates of isopropylhydroxylated metabolites (ATZM3 and PRZ-M4) were remarkably low in mouse compared with rat and guinea pig. 4. The enzyme kinetics of chlorotriazine metabolism were examined by Eadie-Hofstee analyses. Some species differences in Michaelis-Menten parameters for each metabolite were observed, and the ranking orders were varied among the metabolites. 5. The binding affinity of chlorotriazines (SIZ, ATZ and PRZ) and their metabolites (M1-4) for recombinant human oestrogen receptor-alpha was assayed using the fluorescence polarization method. The binding a nity of M2 was significantly higher than those of parent compounds and other metabolites, although the oestrogenic activity was remarkably low compared with that of 17 beta-oestradiol (E2). 6. These results suggest that the pattern of metabolism of SIZ, ATZ and PRZ by the P450 system differs extensively among rat, mouse and guinea pig, and that M2 may be an activated metabolite of chlorotriazines.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.