316
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effect of blending ratio on morphological, chemical, and thermal characteristics of PLA/PCL and PLLA/PCL electrospun fibrous webs

ORCID Icon, ORCID Icon & ORCID Icon
Pages 793-803 | Received 04 Feb 2022, Accepted 13 Jun 2022, Published online: 29 Jun 2022
 

Abstract

Scaffolding structures made of biocompatible and biodegradable polymers are employed in tissue engineering applications to allow cells to perform the activities required to generate new tissue. However, the morphological, chemical, and thermal compatibility of these surfaces with the target tissue should be investigated before cell transplantation. Polymers like polylactic acid (PLA), poly (L-lactide) (PLLA), and polycaprolactone (PCL), which are synthetic biomaterials with high biocompatibility and adjustable biodegradability, have piqued the interest of tissue engineering researchers for years. In the study, electrospun fibrous surfaces with various ratios of PLA/PCL and PLLA/PCL blends (100/0, 10/90, 20/80, 30/70, 40/60, 50/50, and 0/100) are produced. The morphological, chemical, and thermal properties of the suggested surfaces are examined. Although smooth fiber formation is not detected on some surfaces, fibrous surfaces with fiber diameters of 0.962–1.733 µm and porosities of 19.83–29.54% have been observed. Chemical analyses, on the other hand, reveal no solvent residue on surfaces produced with organic solvent systems, indicating that the harmful effect of solvent systems has been eradicated from the fiber surface. Thermal analyses also provide information regarding the crystallinity of surfaces, which will assist future biodegradability research. According to the thermal analysis, the PLA/PCL and PLLA/PCL blend ratios have a significant impact on the surface crystallinity.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study is supported by the TUBITAK (The Scientific and Technological Research Council of Turkey) under grant no. 121M309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.