93
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Computer-aided unbalanced supersaturated designs involving interactions

, &
Pages 756-770 | Received 04 Dec 2014, Accepted 26 Mar 2015, Published online: 20 Apr 2015
 

Abstract

Supersaturated designs (SSDs) are defined as fractional factorial designs whose experimental run size is smaller than the number of main effects to be estimated. While most of the literature on SSDs has focused only on main effects designs, the construction and analysis of such designs involving interactions has not been developed to a great extent. In this paper, we propose a backward elimination design-driven optimization (BEDDO) method, with one main goal in mind, to eliminate the factors which are identified to be fully aliased or highly partially aliased with each other in the design. Under the proposed BEDDO method, we implement and combine correlation-based statistical measures taken from classical test theory and design of experiments field, and we also present an optimality criterion which is a modified form of Cronbach's alpha coefficient. In this way, we provide a new class of computer-aided unbalanced SSDs involving interactions, that derive directly from BEDDO optimization.

AMS Subject Classification:

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.