273
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Maximum a-posteriori estimation of autoregressive processes based on finite mixtures of scale-mixtures of skew-normal distributions

&
Pages 1061-1083 | Received 15 Jul 2016, Accepted 03 Oct 2016, Published online: 26 Oct 2016
 

ABSTRACT

This article investigates maximum a-posteriori (MAP) estimation of autoregressive model parameters when the innovations (errors) follow a finite mixture of distributions that, in turn, are scale-mixtures of skew-normal distributions (SMSN), an attractive and extremely flexible family of probabilistic distributions. The proposed model allows to fit different types of data which can be associated with different noise levels, and provides a robust modelling with great flexibility to accommodate skewness, heavy tails, multimodality and stationarity simultaneously. Also, the existence of convenient hierarchical representations of the SMSN random variables allows us to develop an EM-type algorithm to perform the MAP estimates. A comprehensive simulation study is then conducted to illustrate the superior performance of the proposed method. The new methodology is also applied to annual barley yields data.

Acknowledgment

The authors would like to thank the anonymous reviewers for their suggestions, corrections and encouragement, which helped us to improve the earlier versions of the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.