198
Views
3
CrossRef citations to date
0
Altmetric
Research Article

On E-Bayesian analysis of the hierarchical normal and inverse gamma model using different loss functions and its application

ORCID Icon & ORCID Icon
Pages 1743-1771 | Received 18 Jan 2021, Accepted 23 Nov 2022, Published online: 09 Jan 2023
 

Abstract

This paper introduces the idea of hierarchical modelling to derive the variance (i.e. squared scale) parameter of the hierarchical normal and inverse gamma model using E-Bayesian estimation. We propose the idea of a hierarchical probability density function instead of the traditional hierarchical prior density function. We aim to derive E-Bayesian estimators with respect to the conjugate prior distribution IG(a,b) on the basis of the Balanced squared error loss function (BSELF) and Stein's loss function (STLF) for the unknown squared scale parameter. We use E-Posterior Risk as an evaluation standard. This study also intends to reveal the relationship among the E-Bayesian estimates under three distinct bivariate independent prior distributions of hyperparameters. The asymptotic properties of the E-Bayesian estimators are also evaluated. Monte Carlo simulations are prosecuted to study the efficiency of E-Bayesian estimators empirically and also, a real data application is analysed for exemplifying purposes.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.