198
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Syntheses and structures of mononuclear and binuclear transition metal complexes (Cu, Zn, Ni) with (salicylideneglycine and imidazole)

, , , , , , , & show all
Pages 715-730 | Received 13 Dec 2006, Accepted 26 Jan 2007, Published online: 03 Mar 2008
 

Abstract

Four transition metal (Cu(II), Zn(II) and Ni(II)) complexes with a Schiff-base ligand (salicylideneglycine) have been synthesized. All complexes have been characterized by elemental analysis, IR spectra and UV-vis spectroscopy. Single-crystal analyses were performed with (C9H7NO3)Cu(C3H4N2) (1), (C9H7NO3)Zn(C3H4N2)2 (2), (C9H7NO3)2Ni2(C3H4N2)4 (3) and (C9H7NO3)Ni(C3H4N2)2(C4H5N2O) · CH3OH · 0.5H2O (4) and fluorescence spectra and thermogravimetric analyses were also carried out. Structural analyses show that 1, 2 and 4 have similar coordinated modes with the tridentate amino-Schiff-base ligand, but differ from the binuclear nickel complex 3. The tridentate amino-Schiff-base ligand contains aliphatic nitrogen, phenoxy, and carboxylic oxygen as three donor atoms. In addition, inter- and intra-molecular hydrogen bonds are also discussed.

Acknowledgements

We wish to express our sincere thanks to the National Natural Science Foundation of China (No. 20571036), the Education Foundation of Liaoning Province (No. 05L212), the SRF for ROCS, and SEM for financial assistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.