261
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

New acyclic Schiff-base copper(II) complexes and their electrochemical, catalytic, and antimicrobial studies

, , , , &
Pages 637-650 | Received 26 May 2010, Accepted 17 Nov 2010, Published online: 18 Feb 2011
 

Abstract

A new series of acyclic mononuclear copper(II) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and copper perchlorate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show a d–d transition in the range 500–800 nm, electrochemical studies of the complexes show irreversible one-electron-reduction process around −1.10 to −1.60 V. The reduction potential of the mononuclear copper(II) complexes shifts toward anodic direction upon increasing the chain length of the imine compartment. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff = 1.72–1.76 BM, close to the spin-only value of 1.73 BM. Electrochemical and catalytic studies of the complexes were compared on the basis of increasing the chain length of the imine compartment. All the complexes were screened for antifungal and antibacterial activities.

Acknowledgments

Financial support from CSIR, New Delhi is gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.