271
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, crystal structures, and photophysical properties of dibromo-2-(2′-pyridyl)imidazole and its corresponding boron–fluorine complex

, , &
Pages 3303-3310 | Received 04 May 2011, Accepted 12 Aug 2011, Published online: 26 Sep 2011
 

Abstract

2-(2′-Pyridyl)imidazole L1 and its corresponding boron–fluorine complex, 1, were synthesized and their crystal structures correlated with their photophysical properties. L1 forms a rigid supramolecular network through hydrogen bonds and halogen bond in the single crystal, which induces amplified spontaneous emission in crystals; it emits rather poor fluorescence in solution and powder states. Its boron chelate 1 emits intense fluorescence in solution since boron chelate is an excellent chromophore, and it exhibits large Stokes shift (136 nm in acetonitrile), due to the charge-transfer transition from the electron-donating π system to the electron-accepting boron moiety. Interestingly, 1 is also highly fluorescent in amorphous powder and crystal states; C–C rotation between pyridyl and imidazole groups is inhibited by the formation of a five-member ring containing BF2, and the formation of intermolecular non-covalent bonds is the key factor. Solid emission with large Stokes shift makes it a valuable chromophore for synthesis of functional materials.

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (21002059).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.