266
Views
10
CrossRef citations to date
0
Altmetric
Orginal Articles

Synthesis, characterization, conduction, and dielectric properties of tetra tert-butylsulfanyl substituted phthalocyanines

, &
Pages 717-731 | Received 12 Aug 2014, Accepted 30 Oct 2014, Published online: 24 Dec 2014
 

Abstract

The tert-butylsulfanylphthalonitrile has been prepared with optimized synthetic procedure. Metal free (H2Pc) and metallo phthalocyanines (Pcs) (ZnPc, CoPc, CuPc, PbPc) have been synthesized by cyclotetramerization of tert-butylsulfanylphthalonitrile in the presence of DBU and metal salts. Thus, tert-butylsulfanyl groups enhance the solubility, shift the Q band absorption to the red visible region, and inhibit efficient cofacial interaction of the Pcs (2–6) as evaluated by UV–vis spectra. The electrical conduction and dielectric properties of the synthesized Pc thin films sandwiched between indium tin oxide and aluminum electrodes (ITO–Pc–Al) were investigated from 300 to 500 K. At low bias voltage the conduction is ohmic while at high bias voltage the conduction becomes space charge limited with an exponential distribution of traps. The measured ac conductivity data are discussed in terms of classical models based on pair approximation. It was found that the ac conductivity obeys the power law given by σac = σ0ωs, in which the frequency exponent s decreases with temperature. The real and imaginary parts of the impedance are found to be dependent on both frequency and temperature.

Acknowledgement

The authors thank The Scientific & Technological Research Council of Turkey (TUBITAK) for financial support of this work (Project No: 111T063).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.