142
Views
8
CrossRef citations to date
0
Altmetric
Articles

A density functional theory study of the Cu+·(CO)n (n = 1–3) complexes

, , &
Pages 1528-1543 | Received 24 Jun 2014, Accepted 29 Jan 2015, Published online: 20 Mar 2015
 

Abstract

Density functional theory calculations, with an effective core potential for the copper ion, and large polarized basis set functions have been used to construct the potential energy surface of the Cu+·(CO)n (n = 1–3) complexes. A linear configuration is obtained for the global minimum of the Cu+·CO and Cu+·(CO)2 complexes with a bond dissociation energy (BDE) of 35.9 and 40.0 kcal mol-1, respectively. For the Cu+·(CO)3 complex, a trigonal planar geometry is obtained for the global minimum with a BDE of 16.5 kcal mol−1. C-coordinated copper ion complexes exhibit stronger binding energy than O-coordinated complexes as a result of Clp → 4s σ-donation. The computed sequential BDEs of Cu+·(CO)n (n = 1–4) complexes agree well with experimental findings, in which the electrostatic energy and σ-donation play an important role in the observed trend.

View correction statement:
Corrigendum
Erratum

Acknowledgement

JND would like to thank the Deanship of the Graduate Studies of the Hashemite University (Jordan) for the financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.