169
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis, characterization, and solution behavior of mercury(II) chloride complexes with phosphine tellurides

, , , &
Pages 726-734 | Received 17 Sep 2015, Accepted 29 Oct 2015, Published online: 28 Jan 2016
 

Abstract

The reaction of mercury(II) chloride with neutral phosphine telluride ligands (R3PTe) produced new mercury(II) complexes, HgCl2(R3PTe)2 [R = Me2N (1), Et2N (2), C4H8N (3), C5H10N (4) or n-Bu (5)]. Attempts to isolate the complex of HgCl2 with the morpholinyl ligand, (OC4H8N)3PTe, were unsuccessful. Complexes 15 have been characterized by elemental analyses, IR, and multinuclear (31P, 125Te, and 199Hg) NMR spectroscopy. The solution behavior of the complexes was investigated using variable temperature NMR spectroscopy in the presence of excess ligand and indicated fast ligand exchange on the NMR timescale at room temperature. The metal–ligand exchange barriers in these complexes were estimated to be in the range 8–11 kcal/mol. The results suggest that a slight change in the nature of the substituents on the phosphorus of the ligand can contribute considerably to the lability of the complex obtained. The NMR data are discussed and compared with those obtained for related phosphine chalcogenide systems.

Acknowledgements

We are grateful to the Tunisian Ministry of High Education and Scientific Research for financial support (LR99ES14) of this research and to Prof Fredj Chaabani from the Department of Geology, Faculty of Sciences of Tunis for recording the XRD powder patterns.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.