224
Views
3
CrossRef citations to date
0
Altmetric
Articles

Crystal structure, thermal decomposition mechanism and catalytic performance of hexaaquaaluminum methanesulfonate

, , , &
Pages 1327-1338 | Received 10 Sep 2016, Accepted 29 Dec 2016, Published online: 17 Feb 2017
 

Abstract

Hexaaquaaluminum methanesulfonate crystals, [Al(H2O)6][CH3SO3]3 were synthesized by a hydrothermal reaction of Al(OH)3 with methanesulfonic acid. Single-crystal diffraction determination revealed that Al3+ was coordinated by six water molecules in octahedral geometry, while the CH3SO3 anion connected with Al3+ through coordinated water molecules by hydrogen bonds. The six-coordinate environment of Al was also determined by 27Al MAS NMR measurement. Thermogravimetric analysis and Fourier transform infrared spectroscopy showed that the decomposition intermediate at 265–365 °C was Al2(μ-OH)(CH3SO3)5 and the final product was amorphous Al2O3 residue with about 0.8 wt% SO3 at 520–800 °C. A pure phase of [Al(H2O)6][CH3SO3]3 was confirmed by powder X-ray diffraction analysis. Esterification of n-butyric acid with n-butanol and ketalization of cyclohexanone with glycol catalyzed by [Al(H2O)6][CH3SO3]3 and Al2(μ-OH)(CH3SO3)5, respectively, proceeded in 100% yield by continuously removing the produced water. In the case of tetrahydropyranylation of n-butanol at room temperature in dichloromethane, the catalytic activity of [Al(H2O)6][CH3SO3]3 was much lower than that of Al2(μ-OH)(CH3SO3)5. Furthermore, both [Al(H2O)6][CH3SO3]3 precursor and Al2(μ-OH)(CH3SO3)5 catalysts could be recycled.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.