307
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis, crystal structure, DNA/BSA interaction and in vitro antitumor activity of N-heterocycle Cu(II) and Co(II) complexes

, , , , &
Pages 3110-3131 | Received 27 Dec 2016, Accepted 08 Aug 2017, Published online: 14 Sep 2017
 

Abstract

Investigation of N-heterocycle transition metal complexes has led to the discovery of metal-based antitumor agents. Herein, two binuclear complexes, [Cu(p-4-bmb)(Ac)2]2 (1) and [Co(p-4-bmp)Cl2]2 (2), were prepared and characterized. The interactions of 1 and 2 with calf thymus (CT)-DNA and bovine serum albumin (BSA) were detected by absorbance and emission spectroscopy. The complexes bind to CT-DNA via an intercalative mode and show moderate affinity to BSA. Both complexes exhibited remarkable DNA cleavage activity. The MTT assay demonstrated that 1 exhibited higher cytotoxicity against three human alimentary system carcinoma cell lines compared to 2. Further, a cellular uptake assay demonstrated that 1 can accumulate in the nucleus and mitochondria of SMMC7721 cells to induce DNA damage and mitochondrial dysfunction. Fluorescence staining and flow cytometry analyses revealed that 1 can induce cell death by apoptosis. These findings should promote the development of benzimidazole-based transition metal complexes as novel chemotherapy agents with fewer side effects than conventional antitumor drugs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.