136
Views
21
CrossRef citations to date
0
Altmetric
Articles

Pd(0) nanoparticles immobilized on multinitrogen functionalized halloysite for promoting Sonogashira reaction: studying the role of the number of surface nitrogens in catalytic performance

, , &
Pages 119-134 | Received 28 May 2018, Accepted 18 Oct 2018, Published online: 21 Jan 2019
 

Abstract

Halloysite nanoclay, Hal, was amine-functionalized and subsequently reacted with 2,4,6-trichloro-1,3,5-triazine, TCT, and ethylenediamine, EDA, to provide multinitrogen containing functionality on the surface of Hal. The resulting surface-modified Hal, Hal-2N-TCT-EDA, was then used for immobilization of Pd nanoparticles and affording a heterogeneous catalyst, Pd@Hal-2N-TCT-EDA, with utility for copper and ligand-free Sonogashira coupling of alkynes and aryl halides. The results established the efficiency of this protocol in terms of product yield, ecofriendly nature, and reaction time. Study of the reusability of the catalyst confirmed that the catalyst could be recovered and recycled up to seven times with slight loss of catalytic activity and Pd leaching, indicating the efficiency of Hal-2N-TCT-EDA for embedding Pd nanoparticles. To elucidate the role of the number of surface nitrogens on the catalytic performance, the catalytic activity, and recyclability of the catalyst was compared with those of Hal-2N and Hal-2N-TCT. It was found that more surface nitrogen atoms gave higher loading of Pd and lower Pd leaching. This result confirms the contribution of surface nitrogens to anchor the Pd species and suppress leaching.

Additional information

Funding

The authors appreciate partial financial supports from Iran Polymer and Petrochemical Institute and Alzahra University. M.M.H. and S.S.K.azemi are also grateful to Iran National Science Foundation for the Individual given grant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.