41
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

IN VITRO CLEAVAGE BY ASBESTOS FIBERS OF THE FIFTH COMPONENT OF HUMAN COMPLEMENT THROUGH FREE-RADICAL GENERATION AND KALLIKREIN ACTIVATION

Pages 539-552 | Published online: 30 Nov 2010
 

Abstract

Chrysotile and crocidolite fibers incubated in normal human plasma (NHP) generated from the C5 component of complement C5a-type fragments that stimulated polymorphonuclear leukocyte (PMN) chemotaxis. Absorption of NHP with antiserum against C5a totally abolished neutrophil chemotactic activity. Asbestos fibers also produced C5a small peptides in the presence of ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) but not ethylene diamine tetraacetic acid (EDTA). Activation of C5 was significantly inhibited when asbestos fibers were pretreated with iron chelators such as sodium dithionite (DTN), deferoxamine (DFX), or ascorbate (AA). Concentration-related inhibition of C5 activation was also observed when asbestos fibers were added concurrently to plasma in the presence of DFX, 1,3-dimethyl-2-thiourea (DMTU), a strong hydroxyl scavenger, or aprotinin (APR), a specific protease inhibitor. Further, chrysotile and crocidolite significantly increased plasma kallikrein activity. Data demonstrate that asbestos-induced C5 activation plays a role in inflammatory reactions characteristic of asbestosis through mechanisms involving iron ions, hydroxyl radicals, and oxidized C5-like fragments. The ferrous ions present at the asbestos fiber surface trigger this activation and catalyze, via Fenton reaction, the production of hydroxyl radicals, which in turn convert native C5 to an oxidized C5-like form. This product is then cleaved by kallikrein, activated by the same asbestos fibers, yielding an oxidized C5a with the same functional properties as C5a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.