95
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

PHYSIOLOGICALLY BASED MODELING OF THE MAXIMAL EFFECT OF METABOLIC INTERACTIONS ON THE KINETICS OF COMPONENTS OF COMPLEX CHEMICAL MIXTURES

Pages 209-223 | Published online: 30 Nov 2010
 

Abstract

The objective of this study was to predict and validate the theoretically possible, maximal impact of metabolic interactions on the blood concentration profile of each component in mixtures of volatile organic chemicals (VOCs) [dichloromethane (DCM), benzene (BEN), trichloroethylene (TCE), toluene (TOL), tetrachloroethylene (PER), ethylbenzene (EBZ), styrene (STY), as well as para, ortho-, and meta- xylene ( p -XYL, o -XYL, m -XYL)] in the rat. The methodology consisted of: (1) obtaining the validated, physiologically based toxicokinetic (PBTK) model for each of the mixture components from the literature, (2) substituting the Michaelis?Menten description of metabolism with an equation based on the hepatic extraction ratio ( E ) for simulating the maximal impact of metabolic interactions (i.e., by setting E to 0 or 1 for simulating maximal inhibition or induction, respectively), and (3) validating the PBTK model simulations by comparing the predicted boundaries of venous blood concentrations with the experimental data obtained following exposure to various mixtures of VOCs. All experimental venous blood concentration data for 9 of the 10 chemicals investigated in the present study (PER excepted) fell within the boundaries of the maximal impact of metabolic inhibition and induction predicted by the PBTK model. The modeling approach validated in this study represents a potentially useful tool for screening/identifying the chemicals for which metabolic interactions are likely to be important in the context of mixed exposures and mixture risk assessment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.