65
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

GLUTATHIONE S-CONJUGATE FORMATION AND METABOLISM IN HepG2 CELLS: A CELL MODEL OF MERCAPTURIC ACID BIOSYNTHESIS

Pages 651-663 | Published online: 30 Nov 2010
 

Abstract

Mercapturic acid biosynthesis is mediated by a series of at least four enzymatic steps and three cell membrane transport events, and is believed to require the interorgan shuttling of the various metabolic intermediates. To identify a single cell type that can carry out all of these m etabolic and transport steps, the present study exam ined whether HepG2 cells, a human hepatoma-derived cell line, can convert an electrophilic chemical (1-chloro-2,4-dinitrobenzene, CDNB) to its corresponding mercapturic acid (S -dinitrophenyl- N -acetylcysteine, DNP-NAC). The results demonstrate that HepG2 cells are able to convert CDNB to DNP-NAC in a dose- and time-dependent fashion. Intracellular conjugation with glutathione occurred rapidly, and the resulting glutathione S -conjugate was promptly transported into the culture medium, where it was sequentially degraded to the cysteinylglycine and cysteine S -conjugates. The cysteine conjugate was then presumably reabsorbed, and N -acetylated intracellularly to form the mercapturic acid. The mercapturic acid was found to accumulate slowly in the culture medium, such that after 4 h of incubation, 4-10% of the CDNB dose was recovered as the mercapturic acid. These data provide the first demonstration that a single cell type can carry out all of the transport and enzymatic steps required for mercapturic acid biosynthesis. HepG2 cells may provide a useful model system for studying this important detoxification pathway.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.