131
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

DECOMPOSITION BEHAVIOR AND MECHANISM OF CALCIUM SULFATE UNDER THE CONDITION OF O2/CO2 PULVERIZED COAL COMBUSTION

, &
Pages 199-214 | Received 28 Nov 2000, Accepted 18 Dec 2000, Published online: 06 Apr 2007
 

Abstract

The decomposition behavior and mechanism of calcium sulfate in O2/CO2 pulverized coal combustion were studied in an entrained flow reactor. A reaction rate expression correlating the influence of various factors was proposed for CaS04 decomposition and it is able to predict CaS04 decomposition satisfactorily. Under the conditions investigated, the decomposition of CaS04 was found to be a regime of chemically controlled shrinking core reaction. A CO2-rich atmosphere enhances CaSO4 decomposition in absence of oxygen. CaSO4 particles have catalytic effect on formation of CO from CO2. A high SO2 concentration inhibits CaSO4 decomposition. The kinetics of CaSO4decomposition has obvious dependence on experimental facilities and conditions, whereas the activation energy has much lower dependence. The kinetics derived in this work is more appropriate for investigating desulfurization in O2/CO2 pulverized coal combustion because an entrained flow reactor has a much closer condition to that in O2/CO2 pulverized coal combustion than a TGA.

Additional information

Notes on contributors

KEN OKAZAKI

Corresponding author. Tel.: + 81 3 5734 3335, Fax: + 81 3 5734 2892, e-mail: okazakik@ mech.titech.ac.jp

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.