90
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of the pressure drop and flow field in a rotating fluidized bed

, , &
Pages 1132-1154 | Published online: 09 Sep 2010
 

Rotating fluidized beds (RFB) have found applications as dust filters, dryers, particle coaters, and granulators, and recently as catalytic reactors for the clean up of diesel exhaust. However, successful design and operation of an RFB requires an in-depth understanding of the fundamentals of the fluid dynamics involved. In this study, mechanistic models have been developed to account for the pressure drop relationship with respect to rotating speed, flow rate, properties of the granular particles, and fluidization conditions in the RFB. The models show that the total pressure drop across the bed is quadratically dependent on the rotating speed as well as the flow rate. These quadratic relationships have also been validated experimentally. The pressure drop relationship has further been validated through a full flow field numerical simulation of flow through a rotating bed with a slotted cylindrical distributor but without granular particles in the bed. Using our analytical model together with experimental results from three different types of distributors, a slotted cylinder with a thin metal screen, a perforated cylinder with a thin metal screen, and a sintered metal cylinder, three semi-empirical quadratic equations are obtained to predict the pressure drop across these distributors. A comparison of the distributor pressure drop with that across the fluidized bed (granules only) shows that the pressure drop across the distributor is appreciable and cannot be neglected in RFB applications. The higher the rotating speed, the more significant the pressure drop across the distributor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.