408
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

ADSORPTION, KINETICS, AND EQUILIBRIUM STUDIES ON REMOVAL OF 4,4-DDT FROM AQUEOUS SOLUTIONS USING LOW-COST ADSORBENTS

, , &
Pages 1547-1558 | Published online: 04 Sep 2009
 

Abstract

The removal of a chlorinated pesticide (4,4-DDT) from aqueous solutions by a batch adsorption technique using different low-cost adsorbents was investigated. Two adsorbents, wood sawdust (A) and cork wastes (B), were used to determine adsorption efficiency. The influence of the adsorbent particle size and the organic matter of water (humic acids) on the removal process was studied. The obtained results were compared to those obtained with a commercial powdered activated carbon (PAC, F400, Chemviron) (C). Kinetic studies were performed to understand the mechanistic steps of the adsorption process. The rate of the adsorption kinetics of 4,4-DDT on the low-cost adsorbents was found best fitted with a pseudo-second-order kinetic model. This is in contrast to the rate of the adsorption kinetics of the PAC F400, which was best fitted with the Lagergren model. The application of the Morris-Weber equation showed that the adsorption process of 4,4-DDT on these adsorbents was complex. Both the adsorption on the surface and the intraparticle diffusion were the rate-controlling mechanisms. Langmuir and Freundlich adsorption isotherms were applicable to the adsorption process and their constants were evaluated. The adsorption capacity (qm) calculated from the Langmuir isotherm (69.44 mg·g−1, 19.08 mg·g−1, and 163.90 mg·g−1, respectively, for A, B, and C) showed that the process is highly particle size dependent, that the organic matter influenced the adsorption process negatively, and that wood sawdust is the most effective adsorbent for the removal of 4,4-DDT from aqueous solutions. The adsorbents studied exhibited a possible application in water decontamination, as well as in treatment of industrial and agricultural waste waters.

Notes

k 1 in min−1, h in mg·g−1·min−1, and K p in mg·g−1·min−1/2.

K f in mg·g−1, q m in mg·g−1, and b in mg·L−1.

K f in mg·g−1, q m in mg·g−1, and b in mg·L−1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.