206
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

The Oil from Mentha rotundifolia as Green Inhibitor of Carbon Steel Corrosion in Hydrochloric Acid

, , , , &
 

Abstract

The corrosion inhibition potentials of Mentha rotundifolia oil on carbon steel in 1 M HCl was studied at different concentrations via gravimetric, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. Polarization curves reveal that Mentha rotundifolia oil is a mixed-type inhibitor. Changes in impedance parameters (charge transfer resistance Rt, and double-layer capacitance Cdl) were indicative of adsorption of Mentha rotundifolia on the metal surface, leading to the formation of a protective film. The effect of the temperature on the corrosion behavior with addition of the optimal concentration of Mentha rotundifolia oil was studied in the temperature range 308 and 338 K. Adsorption of oil on the carbon steel surface is found to obey the Langmuir adsorption isotherm. Attempts to explain the inhibitory action were carried out using density functional theory (DFT) at B3LYP/6-31G(d,p) level. Quantum chemical parameters most relevant to its potential action as corrosion inhibitor such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), energy gap (ΔE), and Mulliken charges have been calculated and discussed. The theoretical results were found to be consistent with the experimental data.

Acknowledgments

Prof. Y. KARZAZI extends his appreciation to the Laboratory for Chemistry of Novel Materials, University of Mons, Belgium, for access to the computational facility in Mons.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.