196
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Heterogeneous esterification kinetics of isopropyl oleate synthesis under non-ionizing excitation using nano-anatase imbued mesoporous catalyst

& ORCID Icon
 

Abstract

Performance of a green, cost-effective bio-hydroxyapatite (derived from waste Suidae bone) supported nano-anatase catalyst, has been investigated in the synthesis of isopropyl oleate (IPO) in presence of non-ionizing (NI) excitation. FTIR, XRD, SEM, TGA, BET, NH3-TPD and TEM methods were employed to characterize the catalyst. At identical optimal operating conditions, esterification results demonstrated the energy-efficient augmentation in catalytic performance under NI excitation (OA conversion: 93 ± 2%) compared to the orthodox heating system (OA conversion: 50 ± 2%). This indicated intensification effects of NI excitation over orthodox heating (activation energy: 67.12 kJ/mol). Furthermore, the developed catalyst showed better performance (identified by Langmuir-Hinshelwood kinetics) in terms of lower esterification activation energy (30 kJ/mol) compared to Amberlyst 15 (48.31 kJ/mol) under NI activation. The developed catalyst also showed 2 times more recycling efficiency compared to Amberlyst 15; thus, enumerating sustainable valorization of slaughterhouse waste for preparation of supported catalysts.

Additional information

Funding

This work was supported by University Grants Commission, New Delhi, India through Major Research Project [F.No. 43-161/2014 (SR)].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.