174
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Separation of samarium from medium rare earth mixture using multi-stage counter-current extraction

, , &
 

Abstract

A large number of bifunctional ionic liquid extractant with ammonium-based have been formulated to separate and extract rare earth (RE) ions with better extraction efficiencies and selectivities compared to conventional extractant. In this paper, a methodical study for the separation of samarium from a mixture of samarium, europium, and gadolinium using bifunctional ionic liquid, [A336][P204] was developed. The optimum condition for the extraction was explored in regard to the concentration and type of acid as well as the organic to the aqueous ratio of the mixture. The sum of extraction and scrubbing stages are then calculated using the counter-current theory. The target purity and recovery ratio was set to 99.9% and 90%, respectively. Multi-stage of counter-current extraction process for three, four, and five stages were developed to simulate the extraction process. As a result, extraction with 3.0 M HNO3 and 4:1 organic to aqueous ratio selected as the best condition based on the value of separation factor, β: 2.81. The number of stages calculated by the theory matches the stages done experimentally, which is four. The outcome of the extraction indicates a high recovery value (>90%) but with a poor purity ratio (<70%). For scrubbing stages, by theory 13 stages is required, however in the experimental work, 18 stages needed to achieve the purity of >99%. The counter-current simulation of the samarium extraction from the mixed RE solution showed that a complete separation with excellent purity and recovery is possible and a process flow sheet has been presented.

Additional information

Funding

The research was supported by the Universiti Malaysia Pahang under the Internal Grant Scheme (RDU 160339)—Extraction of Lanthanide using Ionic Liquid.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.