12
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

THE TRANSPORT OF CARBON DIOXIDE IN HIGH MOLECULAR WEIGHT BUFFER SOLUTIONS

&
Pages 81-103 | Received 13 Feb 1980, Published online: 30 Mar 2007
 

Abstract

The diffusion of carbon dioxide in biological media such as tissues and blood is an important physiological phenomenum. Transport of carbon dioxide in aqueous biological media causes, through chemical reactions, the simultaneous flux of several ionic species. The reversible reactions of CO2 are coupled to amino acid dissociations of the protein species which have a large buffer capability. Due to the great difference in mobility of bicarbonate and protein, a diffusion potential evolves, which has a considerable influence upon the total CO2 transport in the medium. The electrical potentials impede the carrier-facilitated CO2transfer associated with the bicarbonate flux. New data on carbon dioxide transport in hemoglobin solutions are presented which clearly show the large reduction of CO2 transport due to the electrical potentials. The experimental results correlate with diffusion potential data obtained previously. A theoretical model correctly predicts both the CO2 transport and diffusion potential data as a function of The ionic composition of the solution. It is concluded that applied or electrical fields can have a significant effect on CO2 transport in reactive biological media.

Additional information

Notes on contributors

EDMUND ZIEGLER

Present address:E.I. du Pont de Nemours Co.,Rochester,New York

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.