92
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

PERFORMANCE OF A PACKED-BED REACTOR

, , &
Pages 225-240 | Received 21 Sep 1987, Accepted 22 Jul 1988, Published online: 25 Apr 2007
 

Abstract

We examined the conversion rates in a packed bed catalytic reactor with a two phase upward flow in a wide range of operating conditions. The oxidation of ethanol to acetic acid in the liquid phase on a Pd-Alumina catalyst was chosen as the test reaction.

Global reaction rates were measured by changing gas velocities, temperature, and feed concentrations of ethanol in the liquid phase. The observed rates were compared with those calculated using two models, assuming a total external wetting of the catalyst. In the first model, a “kinetic” conversion rate was calculated by neglecting any interphase mass transfer resistance. In the second model the interphase mass transfer resistance was considered and expressed by an overall coefficient evaluated from published correlations. The results show that there is an hydrodynamic influence, probably due to the mass transfer and/or to the partial effective wetting of the catalyst. Mass transfer, on the other hand, is better than that observed in other cases. A comparison with the performances of a downflow trickle-bed reactor operating at the same tested conditions showed a much smaller influence of mass transfer and hydrodynamics on the overall conversion rate for the upflow reactor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.