Publication Cover
Phase Transitions
A Multinational Journal
Volume 75, 2002 - Issue 6
326
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

High Pressure and High Temperature Studies on Manganese Oxides

, &
Pages 557-566 | Published online: 27 Oct 2010
 

Abstract

High pressure and high temperature quench experiments on f -MnO 2 , Mn 2 O 3 and sol gel derived manganese oxides have been carried out to identify any new phases to which the materials may transform under high pressure and high temperature conditions. Results of ESR, DTA and TGA investigations on sol gel derived manganese oxide have shown it to be hausmannite Mn 3 O 4 , instead of n -Mn 2 O 3 as reported earlier in the literature. The sol gel derived manganese oxide transforms to n -Mn 2 O 3 when heated above 700°C. Sol gel derived Mn 3 O 4 , when quenched from 5 GPa and temperature range 800-1200°C, gives a mixture of Mn 3 O 4 (hausmannite) and a phase having CaMn 2 O 4 (marokite)-type structure. f -MnO 2 undergoes partial amorphization when pressure-quenched from 8 GPa at room temperature. The high pressure and high temperature quench experiments up to 5 GPa and 700°C showed that the decomposition temperature of f -MnO 2 increases with pressure. The new phase reported by Liu (1976) from diamond-anvil cell (DAC) experiments on pyrolusite MnO 2 is identified to be a low-density polymorph f -MnO 2 . This unusual result of formation of low-density f -MnO 2 , having an open structure at high pressure and high temperature, is probably due to quenching of a non-equilibrium phase in Liu's (1976) laser-heated DAC experiment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.