Publication Cover
Phase Transitions
A Multinational Journal
Volume 75, 2002 - Issue 7-8
11
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Hierarchic Natures and Dynamics of Photoinduced Structural Phase Transition in Non-Degenerate Charge Density Wave States Via Successive Photoexcitations

&
Pages 855-862 | Published online: 25 May 2012
 

Abstract

We investigate the adiabatic and dynamical natures of the lattice relaxation of excitons in strongly coupled electron-phonon (e-ph) systems using the extended Peierls-Hubbard model, so as to clarify the possible mechanisms of the photoinduced structural phase transition (PISPT) via multi-photon. Focusing on the growth process of relaxed domains that is induced by multi-photoexcitation, we calculate the adiabatic potential energy surfaces relevant to the nonlinear lattice relaxations of excitons in this process. Calculated potentials lead to an essential model of a multi-stepwise potential-crossing (MSPC) system that is composed of many displaced harmonic oscillators as an elementary process of the domain growth in the strongly coupled e-ph systems. We also investigate the dynamical natures in such MSPC systems calculating the time-developments the excited wave packet in this system using the density operator. It is concluded from calculated results that the system possibly develops from the lowest-energy potential state to the higher ones by the effect of the photoexcitations followed by the lattice relaxations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.