413
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Structural and magnetic aspects of La4(Co1−xNix)3O10+δ (0 ≤ x ≤ 1)

, , , &
Pages 979-990 | Received 23 Dec 2014, Accepted 10 Jan 2015, Published online: 18 Mar 2015
 

Abstract

The Ruddlesden–Popper (RP3) type oxides, La4Co3O10+δ and La4Ni3O10+δ, form a complete solid solution. Powder X-ray and neutron diffraction data show that La4(Co1−xNix)3O10+δ is isostructural to the monoclinic La4Co3O10+δ structure (P21/a) described for all compositions without any further structural distortions as suggested in the literature. A slight elongation of the Co/Ni–O bonds facing the rock salt interlayer occurs for Ni-rich compositions. The magnetic properties of the solid solution series are mapped in the temperature range from 4 to 300 K, and the results are presented in a magnetic phase diagram. Three regimes with antiferromagnetic order (AF) exist at low temperatures, TN < 10 − 30 K. For x = 0.00, the AF is ascribed to Co(II), whereas a broader AF regime around x = 0.50 is ascribed mainly to Ni(II). Pauli paramagnetism is observed close to metallic La4Ni3O10+δ, x > 0.80. The possibility to tune the oxidation state of the transition metal atoms is demonstrated for La4Co3O10+δ, and exemplified by weakening of a temperature-induced spin transition at around 480 K.

Acknowledgements

Henrik Sønsteby is gratefully acknowledged for his assistance with operation of the PPMS instrumentation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Research leading to these results received funding from the Research Council of Norway (FRINATEK project 221905).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.