Publication Cover
Phase Transitions
A Multinational Journal
Volume 90, 2017 - Issue 4
57
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effect of magnetic, crystal field and exchange interactions on graphene system: a Monte Carlo study

&
Pages 415-422 | Received 17 Feb 2016, Accepted 28 Jun 2016, Published online: 19 Sep 2016
 

ABSTRACT

In this article, we employ the classical Monte Carlo approach to study the magnetic properties of graphene system. We analyze the ground-state phase diagrams in the presence of external magnetic and crystal fields under effect of the exchange interactions. The critical temperature is deduced. It is proven that the model exhibits the second-order phase transitions at the transition temperature. The total magnetization with the exchange interactions has studied under the temperatures effect. The total magnetization with the crystal field has been established under effect of exchange interactions and temperatures effect. The magnetic hysteresis cycles of graphene system is deduced under effect of temperatures and crystal field. The observations are in good agreement with related experiments and the other theoretical results. It is proven that the graphene system exhibits the superparamagnetic at the transition temperature and a specific value of reduced crystal field.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.