163
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Electrical transport in lead-free (Na0.5Bi0.5)1–xSrxTiO3 ceramics (x = 0, 0.01 and 0.02)

, , , , , , & show all
Pages 824-830 | Received 31 Aug 2016, Accepted 08 Dec 2016, Published online: 12 Jan 2017
 

ABSTRACT

Lead-free (Na0.5Bi0.5)1xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were manufactured through a solid-state mixed oxide method and their ac (σac) and dc (σdc) electric conductivity were studied. It is shown that the low-frequency (100 Hz–1 MHz) ac conductivity obeys a power law σac ∼ ωs characteristic for disordered materials. Both the dc and ac conductivities have thermally activated character and possess linear parts with different activation energies. The calculated activation energies are attributed to different mechanism of conductivity. Frequency dependence of σdc and exponent s is reasonably interpreted by a correlated barrier hopping model. The NBT-ST system is expected to be a new promising candidate for lead-free electronic materials.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.