1,264
Views
221
CrossRef citations to date
0
Altmetric
Original Articles

The ideal strength of tungsten

, , &
Pages 1725-1747 | Received 07 Jan 2000, Accepted 11 Sep 2000, Published online: 05 Aug 2009
 

Abstract

Using pseudopotential density functional theory within the local-density approximation, we calculate the ideal shear strengths of W for slip on {110}, {112} and {123} planes allowing for complete structural relaxation orthogonal to the applied shear. The strengths in the weak directions on all planes are found to be very nearly equal (about 18GPa, or 11% of the shear modulus G). Moreover, the shear instability occurs at approximately the same applied shear strain (17–18%). This unusual isotropy is explained in terms of the atomic configurations of high-energy saddle points reached during shear. Analysis of these saddle points may also offer a simple explanation for the prevalence of the pencil glide of dislocations on planes containing a (111) direction in bcc metals. Finally, we calculate the ideal cleavage strengths of W on {100} and compare our calculated ideal shear and cleavage strengths with experimental nanoindentation and whisker measurements. All these results can be rather simply understood using a Frenkel–Orowan crystallographic model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.