129
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Mesoscopic simulation of two-dimensional grain growth with anisotropic grain-boundary properties

, , &
Pages 1271-1297 | Received 27 Mar 2001, Accepted 12 Oct 2001, Published online: 04 Aug 2009
 

Abstract

Grain-boundary (GB) properties in a polycrystalline system are generally anisotropic; in particular, both the GB energy and the mobility depend on the GB misorientation. Here the effect of anisotropic GB properties on two- dimensional grain growth is investigated by computer simulation. A stochastic velocity Monte Carlo algorithm based on a variational formulation for the dissipated power is implemented. The simulations show that grain growth leads to an increase in the fraction of small-angle GBs during the growth process. The average grain area is found to grow with a smaller exponent than in a system with isotropic GB properties. An extended von Neumann-Mullins relation based on averaged GB properties is proposed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.