70
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Temperature- and electron-beam-induced crystallization of zirconia thin films deposited from an aqueous medium: A transmission electron microscopy study

, , &
Pages 2825-2839 | Received 29 Oct 2001, Accepted 15 May 2002, Published online: 04 Aug 2008
 

Abstract

Thin zirconia films prepared by self-assembled monolayer-mediated deposition from an aqueous medium were investigated by transmission electron microscopy and electron-energy-loss spectroscopy. As-grown films were amorphous, and annealing at temperatures below 525°C did not influence the film structure. Annealing at 550°C led to crystallization; amorphous material transformed into the tetragonal phase of ZrO2 (t-ZrO2), yielding a polycrystalline film consisting of 10–50nm sized grains. After annealing at 600°C, a small fraction of monoclinic phase was detected in addition to the tetragonal phase. Sulphur signals were visible in energy-dispersive X-ray spectra of as-grown and of annealed films, with a reduced sulphur content after annealing. Electron-beam irradiation also induced crystallization of amorphous material in as-grown films to give t-ZrO2; in this case the grains forming the polycrystalline film were only 5–10 nm in size.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.