459
Views
100
CrossRef citations to date
0
Altmetric
Original Articles

Connectivity and percolation in simulated grain-boundary networks

, &
Pages 711-726 | Published online: 14 Nov 2010
 

Random percolation theory is a common basis for modelling intergranular phenomena such as cracking, corrosion or diffusion. However, crystallographic constraints in real microstructures dictate that grain boundaries are not assembled at random. In this work a Monte Carlo method is used to construct physically realistic networks composed of high-angle grain boundaries that are susceptible to intergranular attack, as well as twin-variant boundaries that are damage resistant. When crystallographic constraints are enforced, the simulated networks exhibit triple-junction distributions that agree with experiment and reveal the non-random nature of grain-boundary connectivity. The percolation threshold has been determined for several constrained boundary networks and is substantially different from the classical result of percolation theory; compared with a randomly assembled network, about 50-75% more resistant boundaries are required to break up the network of susceptible boundaries. Triple-junction distributions are also shown to capture many details of the correlated percolation problem and to provide a simple means of ranking microstructures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.