42
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Surface deformation induced by a variation in surface stresses in anisotropic half-regions

Pages 1205-1226 | Published online: 15 Nov 2010
 

The deformations and the stresses in anisotropic half-regions taking into account surface stresses originating from surface energy, which exists originally at surfaces and interfaces dividing phases, are analysed theoretically. In the present paper, the equilibrium equation of force considering surface stresses is used to calculate the inelastic deformation induced by a variation in surface stresses. The problem of varying surface stresses in a half-surface of a half-infinite anisotropic domain is analysed using the theory of elasticity. This problem is related to the occurrence of cracks in contaminated, oxidized or chemisorbed surfaces. Stress analysis on the basis of continuum mechanics is performed precisely under the boundary condition taking into account surface stresses. The Fourier transform technique is applied to perform the analysis, and the components of stress and displacement are expressed in an explicit form. The shear component of bulk stress attains infinity at the edge of discontinuity of the surface stresses, and the free surface deforms like an edge dislocation. This result suggests that cracking in a chemically contaminant surface is easier than in a clean surface.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.