1,148
Views
224
CrossRef citations to date
0
Altmetric
Original Articles

TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals

, &
Pages 131-153 | Received 02 Aug 1989, Accepted 22 Aug 1989, Published online: 04 Oct 2006
 

Abstract

The passage of dislocations across grain boundaries in metals has been studied by using the in situ TEM deformation technique. A detailed analysis of the interaction of glissile matrix dislocations with grain-boundary dislocations has been performed. The results show that the dislocations piled-up at the grain boundary can: (1) be transferred directly through the grain boundary into the adjoining grain; (2) be absorbed and transformed into extrinsic grain-boundary dislocations; (3) be accommodated in the grain boundary, followed by the emission from the grain boundary of a matrix dislocation; and (4) be ejected back into their original grain. To predict which slip system is favourable for slip transfer, three criteria have been considered, namely: (1) the angle between the lines of intersection of the incoming and outgoing slip planes with the grain boundary, this should be as small as possible; (2) the resolved shear stress acting on the possible slip systems in the adjoining grain, this should be large and (3) the magnitude of the Burgers vector of the extrinsic dislocations left at the grain boundary following emission of dislocations, this should be a minimum. The Burgers vector of the generated dislocation is dictated primarily by condition (3).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.