159
Views
156
CrossRef citations to date
0
Altmetric
Original Articles

Toughness of an interface along a thin ductile layer joining elastic solids

&
Pages 641-656 | Received 08 Mar 1994, Accepted 13 Apr 1994, Published online: 27 Sep 2006
 

Abstract

The contribution of plastic deformation to the effective work of fracture is computed for a crack lying along one of the interfaces of a thin ductile layer joining two elastic solids. A model is proposed for the joint whose major parameters are the layer thickness, the elastic-plastic properties of material in the layer, and the work of separation and peak separation stress of the local interface fracture process. A symmetric mode I loading of the joint is considered under conditions where the thickness of the layer and the extent of the plastic zone are small compared with the crack length. The crack growth resistance behaviour is computed, with special emphasis on the steady-state work of fracture. The role of the layer thickness in the development of the plasticity contribution to toughness is detailed. Plastic dissipation is fully realized for layers above a certain thickness, characteristic of a plastic zone dimension, and is negligible when the layer is thin relative to this dimension. Other factors which may effect the effective toughness of the joint, such as modulus mismatch of the layer and adherends and residual stress in the layer, are discussed together with limitations and possible extensions of the model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.