160
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

Identification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation

, &
Pages 565-585 | Received 16 Aug 1996, Accepted 06 Jan 1997, Published online: 13 Sep 2006
 

Abstract

Atomic migration in ordered binary alloys with B2 structure is studied by atomistic Monte Carlo simulations where atom migration results from exchanges with a single vacancy on a rigid lattice. Highly correlated vacancy sequences are observed and studied using improved residence time algorithms. It is shown that, for partially ordered structures, the classical six-jump cycles contribute only partially to the diffusion process, and that a wide range of other correlated sequences are observed, including the recently proposed antisite bridge mechanism. Among the other sequences, we have identified six-jump cycles that are assisted by antisites.

Furthermore, when atomic interaction energies present a high degree of asymmetry, two effects have been observed: the ratio of tracer diffusion coefficients increases as a result of additional loops involved in the six-jump cycles; diffusion coefficients exhibit an upward curvature below the order-disorder transition temperature. These two effects have been observed in some alloys such as Co—Ga and therefore can be qualitatively reproduced without invoking triple defects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.