10
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Simulation study of grain growth in layered materials Application to YBa2Cu3O7-δ ceramics

&
Pages 141-150 | Received 03 Jan 1994, Accepted 04 Jan 1994, Published online: 27 Sep 2006
 

Abstract

We propose a simple lattice model which takes into account the anisotropy of grain formation energy to study the grain growth of layered materials such as polycrystalline superconducting cuprates. The anisotropic parameter in this model is estimated in the case of YBa2Cu3O7-δvia a semi-empirical theory for surface energy anisotropy. Monte Car10 simulation shows that the anisotropy of grain formation energy causes abnormal grain growth in which large elongated grains grow at the expense of fine matrix grains. The evolution with time of parameters characterizing the grain sizes and shapes have been calculated. In general, the results agree very well with experimental observation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.