851
Views
4
CrossRef citations to date
0
Altmetric
BEME Guide

Technology enhanced neuroanatomy teaching techniques: A focused BEME systematic review of current evidence: BEME Guide No. 75

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
 

Abstract

Background

In response to growing curriculum pressures and reduced time dedicated to teaching anatomy, research has been conducted into developing innovative teaching techniques. This raises important questions for neuroanatomy education regarding which teaching techniques are most beneficial for knowledge acquisition and long-term retention, and how they are best implemented. This focused systematic review aims to provide a review of technology-enhanced teaching methods available to neuroanatomy educators, particularly in knowledge acquisition and long-term retention, compared to traditional didactic techniques, and proposes reasons for why they work in some contexts.

Methods

Electronic databases were searched from January 2015 to June 2020 with keywords that included combinations of ‘neuroanatomy,’ ‘technology,’ ‘teaching,’ and ‘effectiveness’ combined with Boolean phrases ‘AND’ and ‘OR.’ The contexts and outcomes for all studies were summarised while coding, and theories for why particular interventions worked were discussed.

Results

There were 4287 articles identified for screening, with 13 studies included for final analysis. There were four technologies of interest: stereoscopic views of videos, stereoscopic views of images, augmented reality (AR), and virtual reality (VR). No recommendation for a particular teaching method was made in six studies (46%) while recommendations (from weak to moderate) were made in seven studies (54%). There was weak to moderate evidence for the efficacy of stereoscopic images and AR, and no difference in the use of stereoscopic videos or VR compared to controls.

Conclusions

To date, technology-enhanced teaching is not inferior to teaching by conventional didactic methods. There are promising results for these methods in complex spatial anatomy and reducing cognitive load. Possible reasons for why interventions worked were described including students’ engagement with the object, cognitive load theory, complex spatial relationships, and the technology learning curve. Future research may build on the theorised explanations proposed here and develop and test innovative technologies that build on prior research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.